Likelihood-based Imprecise Regression
نویسندگان
چکیده
Article history: Available online 28 June 2012
منابع مشابه
Robust regression with imprecise data
We consider the problem of regression analysis with imprecise data. By imprecise data we mean imprecise observations of precise quantities in the form of sets of values. In this paper, we explore a recently introduced likelihood-based approach to regression with such data. The approach is very general, since it covers all kinds of imprecise data (i.e. not only intervals) and it is not restricte...
متن کاملAn Exact Algorithm for Likelihood-Based Imprecise Regression in the Case of Simple Linear Regression with Interval Data
Likelihood-based Imprecise Regression (LIR) is a recently introduced approach to regression with imprecise data. Here we consider a robust regression method derived from the general LIR approach and we establish an exact algorithm to determine the set-valued result of the LIR analysis in the special case of simple linear regression with interval data.
متن کاملRegression with Imprecise Data: A Robust Approach
We introduce a robust regression method for imprecise data, and apply it to social survey data. Our method combines nonparametric likelihood inference with imprecise probability, so that only very weak assumptions are needed and different kinds of uncertainty can be taken into account. The proposed regression method is based on interval dominance: interval estimates of quantiles of the error di...
متن کاملRobustness-based portfolio optimization under epistemic uncertainty
In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...
متن کاملبرازش توابع انتقالی خاک با استفاده از رگرسیون فازی
Pedotransfer functions are the predictive models of a certain soil property from other easily, routinely, or cheaply measured properties. The common approach for fitting the pedotransfer functions is the use of the conventional statistical regression method. Such an approach is heavily based on the crisp obervations and also the crisp relations among variables. In the modeling natural systems, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Approx. Reasoning
دوره 53 شماره
صفحات -
تاریخ انتشار 2012